Library Flocq.Calc.Round

This file is part of the Flocq formalization of floating-point arithmetic in Coq: https://flocq.gitlabpages.inria.fr/
Copyright (C) 2010-2018 Sylvie Boldo
Copyright (C) 2010-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the COPYING file for more details.

Helper function for computing the rounded value of a real number.


From Coq Require Import ZArith Reals Lia.

Require Import Core Digits Float_prop Bracket.

Section Fcalc_round.

Variable beta : radix.
Notation bpow e := (bpow beta e).

Section Fcalc_round_fexp.

Variable fexp : Z Z.
Context { valid_exp : Valid_exp fexp }.
Notation format := (generic_format beta fexp).

Theorem cexp_inbetween_float :
   x m e l,
  (0 < x)%R
  inbetween_float beta m e x l
  (e cexp beta fexp x e fexp (Zdigits beta m + e))%Z
  cexp beta fexp x = fexp (Zdigits beta m + e).

Theorem cexp_inbetween_float_loc_Exact :
   x m e l,
  (0 x)%R
  inbetween_float beta m e x l
  (e cexp beta fexp x l = loc_Exact
   e fexp (Zdigits beta m + e) l = loc_Exact)%Z.

Relates location and rounding.

Theorem inbetween_float_round :
   rnd choice,
  ( x m l, inbetween_int m x l rnd x = choice m l )
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e x l
  round beta fexp rnd x = F2R (Float beta (choice m l) e).

Definition cond_incr (b : bool) m := if b then (m + 1)%Z else m.

Lemma le_cond_incr_le :
   b m, (m cond_incr b m m + 1)%Z.

Theorem inbetween_float_round_sign :
   rnd choice,
  ( x m l, inbetween_int m (Rabs x) l
    rnd x = cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m l) )
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e (Rabs x) l
  round beta fexp rnd x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m l)) e).

Relates location and rounding down.

Theorem inbetween_int_DN :
   x m l,
  inbetween_int m x l
  Zfloor x = m.

Theorem inbetween_float_DN :
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e x l
  round beta fexp Zfloor x = F2R (Float beta m e).

Definition round_sign_DN s l :=
  match l with
  | loc_Exactfalse
  | _s
  end.

Theorem inbetween_int_DN_sign :
   x m l,
  inbetween_int m (Rabs x) l
  Zfloor x = cond_Zopp (Rlt_bool x 0) (cond_incr (round_sign_DN (Rlt_bool x 0) l) m).

Theorem inbetween_float_DN_sign :
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e (Rabs x) l
  round beta fexp Zfloor x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (cond_incr (round_sign_DN (Rlt_bool x 0) l) m)) e).

Relates location and rounding up.

Definition round_UP l :=
  match l with
  | loc_Exactfalse
  | _true
  end.

Theorem inbetween_int_UP :
   x m l,
  inbetween_int m x l
  Zceil x = cond_incr (round_UP l) m.

Theorem inbetween_float_UP :
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e x l
  round beta fexp Zceil x = F2R (Float beta (cond_incr (round_UP l) m) e).

Definition round_sign_UP s l :=
  match l with
  | loc_Exactfalse
  | _negb s
  end.

Theorem inbetween_int_UP_sign :
   x m l,
  inbetween_int m (Rabs x) l
  Zceil x = cond_Zopp (Rlt_bool x 0) (cond_incr (round_sign_UP (Rlt_bool x 0) l) m).

Theorem inbetween_float_UP_sign :
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e (Rabs x) l
  round beta fexp Zceil x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (cond_incr (round_sign_UP (Rlt_bool x 0) l) m)) e).

Relates location and rounding toward zero.

Definition round_ZR (s : bool) l :=
  match l with
  | loc_Exactfalse
  | _s
  end.

Theorem inbetween_int_ZR :
   x m l,
  inbetween_int m x l
  Ztrunc x = cond_incr (round_ZR (Zlt_bool m 0) l) m.

Theorem inbetween_float_ZR :
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e x l
  round beta fexp Ztrunc x = F2R (Float beta (cond_incr (round_ZR (Zlt_bool m 0) l) m) e).

Theorem inbetween_int_ZR_sign :
   x m l,
  inbetween_int m (Rabs x) l
  Ztrunc x = cond_Zopp (Rlt_bool x 0) m.

Theorem inbetween_float_ZR_sign :
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e (Rabs x) l
  round beta fexp Ztrunc x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) m) e).

Relates location and rounding to nearest.

Definition round_N (p : bool) l :=
  match l with
  | loc_Exactfalse
  | loc_Inexact Ltfalse
  | loc_Inexact Eqp
  | loc_Inexact Gttrue
  end.

Theorem inbetween_int_N :
   choice x m l,
  inbetween_int m x l
  Znearest choice x = cond_incr (round_N (choice m) l) m.

Theorem inbetween_int_N_sign :
   choice x m l,
  inbetween_int m (Rabs x) l
  Znearest choice x = cond_Zopp (Rlt_bool x 0) (cond_incr (round_N (if Rlt_bool x 0 then negb (choice (-(m + 1))%Z) else choice m) l) m).

Relates location and rounding to nearest even.
Relates location and rounding to nearest away.

Theorem inbetween_int_NA :
   x m l,
  inbetween_int m x l
  ZnearestA x = cond_incr (round_N (Zle_bool 0 m) l) m.

Theorem inbetween_float_NA :
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e x l
  round beta fexp ZnearestA x = F2R (Float beta (cond_incr (round_N (Zle_bool 0 m) l) m) e).

Theorem inbetween_int_NA_sign :
   x m l,
  inbetween_int m (Rabs x) l
  ZnearestA x = cond_Zopp (Rlt_bool x 0) (cond_incr (round_N true l) m).

Theorem inbetween_float_NA_sign :
   x m l,
  let e := cexp beta fexp x in
  inbetween_float beta m e (Rabs x) l
  round beta fexp ZnearestA x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (cond_incr (round_N true l) m)) e).

Definition truncate_aux t k :=
  let '(m, e, l) := t in
  let p := Zpower beta k in
  (Z.div m p, (e + k)%Z, new_location p (Zmod m p) l).

Theorem truncate_aux_comp :
   t k1 k2,
  (0 < k1)%Z
  (0 < k2)%Z
  truncate_aux t (k1 + k2) = truncate_aux (truncate_aux t k1) k2.

Given a triple (mantissa, exponent, position), this function computes a triple with a canonic exponent, assuming the original triple had enough precision.

Definition truncate t :=
  let '(m, e, l) := t in
  let k := (fexp (Zdigits beta m + e) - e)%Z in
  if Zlt_bool 0 k then truncate_aux t k
  else t.

Theorem truncate_0 :
   e l,
  let '(m', e', l') := truncate (0, e, l)%Z in
  m' = Z0.

Theorem generic_format_truncate :
   m e l,
  (0 m)%Z
  let '(m', e', l') := truncate (m, e, l) in
  format (F2R (Float beta m' e')).

Theorem truncate_correct_format :
   m e,
  m Z0
  let x := F2R (Float beta m e) in
  generic_format beta fexp x
  (e fexp (Zdigits beta m + e))%Z
  let '(m', e', l') := truncate (m, e, loc_Exact) in
  x = F2R (Float beta m' e') e' = cexp beta fexp x.

Theorem truncate_correct_partial' :
   x m e l,
  (0 < x)%R
  inbetween_float beta m e x l
  (e cexp beta fexp x)%Z
  let '(m', e', l') := truncate (m, e, l) in
  inbetween_float beta m' e' x l' e' = cexp beta fexp x.

Theorem truncate_correct_partial :
   x m e l,
  (0 < x)%R
  inbetween_float beta m e x l
  (e fexp (Zdigits beta m + e))%Z
  let '(m', e', l') := truncate (m, e, l) in
  inbetween_float beta m' e' x l' e' = cexp beta fexp x.

Theorem truncate_correct' :
   x m e l,
  (0 x)%R
  inbetween_float beta m e x l
  (e cexp beta fexp x)%Z l = loc_Exact
  let '(m', e', l') := truncate (m, e, l) in
  inbetween_float beta m' e' x l'
  (e' = cexp beta fexp x (l' = loc_Exact format x)).

Theorem truncate_correct :
   x m e l,
  (0 x)%R
  inbetween_float beta m e x l
  (e fexp (Zdigits beta m + e))%Z l = loc_Exact
  let '(m', e', l') := truncate (m, e, l) in
  inbetween_float beta m' e' x l'
  (e' = cexp beta fexp x (l' = loc_Exact format x)).

Section round_dir.

Variable rnd : R Z.
Context { valid_rnd : Valid_rnd rnd }.

Variable choice : Z location Z.
Hypothesis inbetween_int_valid :
   x m l,
  inbetween_int m x l
  rnd x = choice m l.

Theorem round_any_correct :
   x m e l,
  inbetween_float beta m e x l
  (e = cexp beta fexp x (l = loc_Exact format x))
  round beta fexp rnd x = F2R (Float beta (choice m l) e).

Truncating a triple is sufficient to round a real number.

Theorem round_trunc_any_correct :
   x m e l,
  (0 x)%R
  inbetween_float beta m e x l
  (e fexp (Zdigits beta m + e))%Z l = loc_Exact
  round beta fexp rnd x = let '(m', e', l') := truncate (m, e, l) in F2R (Float beta (choice m' l') e').

Theorem round_trunc_any_correct' :
   x m e l,
  (0 x)%R
  inbetween_float beta m e x l
  (e cexp beta fexp x)%Z l = loc_Exact
  round beta fexp rnd x = let '(m', e', l') := truncate (m, e, l) in F2R (Float beta (choice m' l') e').

End round_dir.

Section round_dir_sign.

Variable rnd : R Z.
Context { valid_rnd : Valid_rnd rnd }.

Variable choice : bool Z location Z.
Hypothesis inbetween_int_valid :
   x m l,
  inbetween_int m (Rabs x) l
  rnd x = cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m l).

Theorem round_sign_any_correct :
   x m e l,
  inbetween_float beta m e (Rabs x) l
  (e = cexp beta fexp x (l = loc_Exact format x))
  round beta fexp rnd x = F2R (Float beta (cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m l)) e).

Truncating a triple is sufficient to round a real number.

Theorem round_trunc_sign_any_correct' :
   x m e l,
  inbetween_float beta m e (Rabs x) l
  (e cexp beta fexp x)%Z l = loc_Exact
  round beta fexp rnd x = let '(m', e', l') := truncate (m, e, l) in F2R (Float beta (cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m' l')) e').

Theorem round_trunc_sign_any_correct :
   x m e l,
  inbetween_float beta m e (Rabs x) l
  (e fexp (Zdigits beta m + e))%Z l = loc_Exact
  round beta fexp rnd x = let '(m', e', l') := truncate (m, e, l) in F2R (Float beta (cond_Zopp (Rlt_bool x 0) (choice (Rlt_bool x 0) m' l')) e').

End round_dir_sign.

Instances of the theorems above, for the usual rounding modes.


Definition round_DN_correct :=
  round_any_correct _ (fun m _m) inbetween_int_DN.

Definition round_trunc_DN_correct :=
  round_trunc_any_correct _ (fun m _m) inbetween_int_DN.

Definition round_trunc_DN_correct' :=
  round_trunc_any_correct' _ (fun m _m) inbetween_int_DN.

Definition round_sign_DN_correct :=
  round_sign_any_correct _ (fun s m lcond_incr (round_sign_DN s l) m) inbetween_int_DN_sign.

Definition round_trunc_sign_DN_correct :=
  round_trunc_sign_any_correct _ (fun s m lcond_incr (round_sign_DN s l) m) inbetween_int_DN_sign.

Definition round_trunc_sign_DN_correct' :=
  round_trunc_sign_any_correct' _ (fun s m lcond_incr (round_sign_DN s l) m) inbetween_int_DN_sign.

Definition round_UP_correct :=
  round_any_correct _ (fun m lcond_incr (round_UP l) m) inbetween_int_UP.

Definition round_trunc_UP_correct :=
  round_trunc_any_correct _ (fun m lcond_incr (round_UP l) m) inbetween_int_UP.

Definition round_trunc_UP_correct' :=
  round_trunc_any_correct' _ (fun m lcond_incr (round_UP l) m) inbetween_int_UP.

Definition round_sign_UP_correct :=
  round_sign_any_correct _ (fun s m lcond_incr (round_sign_UP s l) m) inbetween_int_UP_sign.

Definition round_trunc_sign_UP_correct :=
  round_trunc_sign_any_correct _ (fun s m lcond_incr (round_sign_UP s l) m) inbetween_int_UP_sign.

Definition round_trunc_sign_UP_correct' :=
  round_trunc_sign_any_correct' _ (fun s m lcond_incr (round_sign_UP s l) m) inbetween_int_UP_sign.

Definition round_ZR_correct :=
  round_any_correct _ (fun m lcond_incr (round_ZR (Zlt_bool m 0) l) m) inbetween_int_ZR.

Definition round_trunc_ZR_correct :=
  round_trunc_any_correct _ (fun m lcond_incr (round_ZR (Zlt_bool m 0) l) m) inbetween_int_ZR.

Definition round_trunc_ZR_correct' :=
  round_trunc_any_correct' _ (fun m lcond_incr (round_ZR (Zlt_bool m 0) l) m) inbetween_int_ZR.

Definition round_sign_ZR_correct :=
  round_sign_any_correct _ (fun s m lm) inbetween_int_ZR_sign.

Definition round_trunc_sign_ZR_correct :=
  round_trunc_sign_any_correct _ (fun s m lm) inbetween_int_ZR_sign.

Definition round_trunc_sign_ZR_correct' :=
  round_trunc_sign_any_correct' _ (fun s m lm) inbetween_int_ZR_sign.

Definition round_NE_correct :=
  round_any_correct _ (fun m lcond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE.

Definition round_trunc_NE_correct :=
  round_trunc_any_correct _ (fun m lcond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE.

Definition round_trunc_NE_correct' :=
  round_trunc_any_correct' _ (fun m lcond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE.

Definition round_sign_NE_correct :=
  round_sign_any_correct _ (fun s m lcond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE_sign.

Definition round_trunc_sign_NE_correct :=
  round_trunc_sign_any_correct _ (fun s m lcond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE_sign.

Definition round_trunc_sign_NE_correct' :=
  round_trunc_sign_any_correct' _ (fun s m lcond_incr (round_N (negb (Z.even m)) l) m) inbetween_int_NE_sign.

Definition round_NA_correct :=
  round_any_correct _ (fun m lcond_incr (round_N (Zle_bool 0 m) l) m) inbetween_int_NA.

Definition round_trunc_NA_correct :=
  round_trunc_any_correct _ (fun m lcond_incr (round_N (Zle_bool 0 m) l) m) inbetween_int_NA.

Definition round_trunc_NA_correct' :=
  round_trunc_any_correct' _ (fun m lcond_incr (round_N (Zle_bool 0 m) l) m) inbetween_int_NA.

Definition round_sign_NA_correct :=
  round_sign_any_correct _ (fun s m lcond_incr (round_N true l) m) inbetween_int_NA_sign.

Definition round_trunc_sign_NA_correct :=
  round_trunc_sign_any_correct _ (fun s m lcond_incr (round_N true l) m) inbetween_int_NA_sign.

Definition round_trunc_sign_NA_correct' :=
  round_trunc_sign_any_correct' _ (fun s m lcond_incr (round_N true l) m) inbetween_int_NA_sign.

End Fcalc_round_fexp.

Specialization of truncate for FIX formats.

Variable emin : Z.

Definition truncate_FIX t :=
  let '(m, e, l) := t in
  let k := (emin - e)%Z in
  if Zlt_bool 0 k then
    let p := Zpower beta k in
    (Z.div m p, (e + k)%Z, new_location p (Zmod m p) l)
  else t.

Theorem truncate_FIX_correct :
   x m e l,
  inbetween_float beta m e x l
  (e emin)%Z l = loc_Exact
  let '(m', e', l') := truncate_FIX (m, e, l) in
  inbetween_float beta m' e' x l'
  (e' = cexp beta (FIX_exp emin) x (l' = loc_Exact generic_format beta (FIX_exp emin) x)).

End Fcalc_round.