Library Flocq.Core.Defs
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2009-2018 Sylvie Boldo
Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
Copyright (C) 2009-2018 Guillaume Melquiond
Basic definitions: float and rounding property
Definition of a floating-point number
Record float (beta : radix) := Float { Fnum : Z ; Fexp : Z }.
Arguments Fnum {beta}.
Arguments Fexp {beta}.
Variable beta : radix.
Definition F2R (f : float beta) :=
(IZR (Fnum f) × bpow beta (Fexp f))%R.
Arguments Fnum {beta}.
Arguments Fexp {beta}.
Variable beta : radix.
Definition F2R (f : float beta) :=
(IZR (Fnum f) × bpow beta (Fexp f))%R.
Requirements on a rounding mode
Definition round_pred_total (P : R → R → Prop) :=
∀ x, ∃ f, P x f.
Definition round_pred_monotone (P : R → R → Prop) :=
∀ x y f g, P x f → P y g → (x ≤ y)%R → (f ≤ g)%R.
Definition round_pred (P : R → R → Prop) :=
round_pred_total P ∧
round_pred_monotone P.
End Def.
Arguments Fnum {beta}.
Arguments Fexp {beta}.
Arguments F2R {beta}.
Section RND.
∀ x, ∃ f, P x f.
Definition round_pred_monotone (P : R → R → Prop) :=
∀ x y f g, P x f → P y g → (x ≤ y)%R → (f ≤ g)%R.
Definition round_pred (P : R → R → Prop) :=
round_pred_total P ∧
round_pred_monotone P.
End Def.
Arguments Fnum {beta}.
Arguments Fexp {beta}.
Arguments F2R {beta}.
Section RND.
property of being a round toward -inf
Definition Rnd_DN_pt (F : R → Prop) (x f : R) :=
F f ∧ (f ≤ x)%R ∧
∀ g : R, F g → (g ≤ x)%R → (g ≤ f)%R.
F f ∧ (f ≤ x)%R ∧
∀ g : R, F g → (g ≤ x)%R → (g ≤ f)%R.
property of being a round toward +inf
Definition Rnd_UP_pt (F : R → Prop) (x f : R) :=
F f ∧ (x ≤ f)%R ∧
∀ g : R, F g → (x ≤ g)%R → (f ≤ g)%R.
F f ∧ (x ≤ f)%R ∧
∀ g : R, F g → (x ≤ g)%R → (f ≤ g)%R.
property of being a round toward zero
Definition Rnd_ZR_pt (F : R → Prop) (x f : R) :=
( (0 ≤ x)%R → Rnd_DN_pt F x f ) ∧
( (x ≤ 0)%R → Rnd_UP_pt F x f ).
( (0 ≤ x)%R → Rnd_DN_pt F x f ) ∧
( (x ≤ 0)%R → Rnd_UP_pt F x f ).
property of being a round to nearest
Definition Rnd_N_pt (F : R → Prop) (x f : R) :=
F f ∧
∀ g : R, F g → (Rabs (f - x) ≤ Rabs (g - x))%R.
Definition Rnd_NG_pt (F : R → Prop) (P : R → R → Prop) (x f : R) :=
Rnd_N_pt F x f ∧
( P x f ∨ ∀ f2 : R, Rnd_N_pt F x f2 → f2 = f ).
Definition Rnd_NA_pt (F : R → Prop) (x f : R) :=
Rnd_N_pt F x f ∧
∀ f2 : R, Rnd_N_pt F x f2 → (Rabs f2 ≤ Rabs f)%R.
Definition Rnd_N0_pt (F : R → Prop) (x f : R) :=
Rnd_N_pt F x f ∧
∀ f2 : R, Rnd_N_pt F x f2 → (Rabs f ≤ Rabs f2)%R.
End RND.
F f ∧
∀ g : R, F g → (Rabs (f - x) ≤ Rabs (g - x))%R.
Definition Rnd_NG_pt (F : R → Prop) (P : R → R → Prop) (x f : R) :=
Rnd_N_pt F x f ∧
( P x f ∨ ∀ f2 : R, Rnd_N_pt F x f2 → f2 = f ).
Definition Rnd_NA_pt (F : R → Prop) (x f : R) :=
Rnd_N_pt F x f ∧
∀ f2 : R, Rnd_N_pt F x f2 → (Rabs f2 ≤ Rabs f)%R.
Definition Rnd_N0_pt (F : R → Prop) (x f : R) :=
Rnd_N_pt F x f ∧
∀ f2 : R, Rnd_N_pt F x f2 → (Rabs f ≤ Rabs f2)%R.
End RND.