Library Flocq.Core.FIX
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: https://flocq.gitlabpages.inria.fr/
Copyright (C) 2009-2018 Sylvie Boldo
Copyright (C) 2009-2018 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
Copyright (C) 2009-2018 Guillaume Melquiond
Fixed-point format
From Coq Require Import ZArith Reals Lia.
Require Import Zaux Raux Defs Round_pred Generic_fmt Ulp Round_NE.
Section RND_FIX.
Variable beta : radix.
Notation bpow := (bpow beta).
Variable emin : Z.
Inductive FIX_format (x : R) : Prop :=
FIX_spec (f : float beta) :
x = F2R f → (Fexp f = emin)%Z → FIX_format x.
Definition FIX_exp (e : Z) := emin.
Properties of the FIX format
Global Instance FIX_exp_valid : Valid_exp FIX_exp.
Theorem generic_format_FIX :
∀ x, FIX_format x → generic_format beta FIX_exp x.
Theorem FIX_format_generic :
∀ x, generic_format beta FIX_exp x → FIX_format x.
Theorem FIX_format_satisfies_any :
satisfies_any FIX_format.
Global Instance FIX_exp_monotone : Monotone_exp FIX_exp.
Theorem ulp_FIX :
∀ x, ulp beta FIX_exp x = bpow emin.
Global Instance exists_NE_FIX :
Exists_NE beta FIX_exp.
End RND_FIX.
Theorem round_FIX_IZR :
∀ f x,
round radix2 (FIX_exp 0) f x = IZR (f x).